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Fig. 1 Thermal disturbance propagation in very rarefied-
gas field

Here p is the perturbation pressure, 6 the perturbation tem-
perature, u the velocity, r the normal stress, and q the heat
flux. The relaxation time is defined by tf = juo/Po- In Eqs.
(1) and (2), x,t, and the propagation velocities GI and c2 are
written in the dimensionless form

L 1 L - = 0.813 - = 2.13
Co

As an illustrative example, the disturbance produced by a
plate suddenly heated in a rarefied-gas field, initially in
equilibrium at a temperature TO, can be calculated assuming
F = H = 0, L/CQ « tf and that specular reflection does not
occur at the plate. The field particles are absorbed and re-
emitted with a Maxwellian distribution at the wall tempera-
ture Tw. Continuity of mass and the equation of state re-
quire that2

sw + (Ow/2) pw = u = 0

The characteristic values at the heated wall are P2+ = 1.39
ewj p1+ = 0.740W. At the unheated wall (1), (9 = 0, and the
fast characteristic results in an average pressure p = 1.080W.
At wall (2) , the slow and fast characteristics yield an average
pressure p = Q.56W (Fig. 1).

The heated plate consequently produces a pressure dis-
turbance that is transmitted by the rarefied-gas field and re-
sults in a positive pressure or repulsive force at (B) when
Bw > 0 and a negative pressure or attractive force when 6W < 0.

This thermal disturbance propagation in the rarefied-gas
field which occurs in the limit L/tfcQ « 1, F = H = 0 is
unique in that relatively few field particle collisions occur
during the propagation. Disturbances originated at a
boundary will not be altered during propagation by other
disturbances existing in the field and will be altered only by
collisions at another boundary. Therefore, the thermal dis-
turbances initiated at boundaries will propagate unchanged
in the field.

In the limit tf » t, when F = H = 0, the one-dimensional
equations for longitudinal disturbances can be written in
the form
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By elimination of the terms containing u and q, the following
propagation equations are obtained for the longitudinal tem-
perature, stress, and pressure disturbances :

- 0.11 - )
0o/ (9)

Z T t ( e + 0.78p + 1.18 - =

(2.13)2 ff + 0.78p + 1•18s) (10)

The equations for the propagation of small plane disturb-
ances, Eqs. (1) and (2), also may be written in the following
form:

± V]-Pi,2± = 0

± V] x P1)2± = 0

where, tf » t, F = H = 0, Pi,2 = iPi,2, c is the dimensionless
propagation velocity, and n is a unit vector along the direc-
tion of propagation. The forward propagating plane longi-
tudinal disturbances consequently satisfy equations of the
form

V-P + (l/c)(dn-P)/&] = 0

V xP = 0
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A Further Note on Propagation of
Transverse Disturbances in

Rarefied-Gas Flows

J. G. LOGAN*
Aerospace Corporation, Los Angeles, Calif.

LEES and Yang1 recently have shown that the two-dimen-
sional Grad equations for the rarefied-gas field, when

applied to the Rayleigh problem, indicate the propagation
of small transverse shear disturbances along distinct char-
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acteristics with a velocity1*2 c = ±(|-po/Po)1/2. The propa-
gation phenomena occur in the limit that the flow time, the
time during which the propagation occurs, is small com-
pared to the relaxation time, the mean time between field
particle collisions. Similar propagation phenomena were
shown to exist in the analysis of Lees.3'4

The existence of this small-disturbance propagation phe-
nomenon along distinct characteristics suggests that, in this
limit, the linearized small-disturbance propagation equations
for the Rayleigh problem also satisfy equations of the form

((b/bf) ± c(b/by-)} Q(y, i) = (1)
when no external sources exist in the field. Q(y, t) is defined
by Q(y, t) = aPXy(y, t) + $u(y, t) + yqx(y> t), where a, £, and
7 are constants, Pxy is the shear stress, u the shear velocity,
and qx the heat flux.

With the assumption of small impulsive velocities and
small temperature differences, the system of partial differ-
ential equations for the Rayleigh problem may be written in
the following form:
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where w' = u,v' = v, P'/PQ = 1 + s, p'/p0 = 1 + p, ^V^o =
1 + 0, Pxx = Pxx, Pxj/' = Pxy, Py/ = Pj/y, g*' = qx, qv' =
gy, £/ = jLto/po- The unprimed quantities denote small per-
turbations in the undisturbed quantities denoted here by
primes. Here p' is the gas density, T' the temperature, u'
the shear velocity, vr the normal velocity, p' the pressure,
P»/ the stress tensor, g/ the heat flux, ci and c2 are propaga-
tion velocities, and a relaxation time tf is defined by Mo/Po-
Equations (2-4) describing the propagation of the transverse
components may be separated from the equations describing
the propagation of the longitudinal components, i.e., the
transverse and longitudinal propagation phenomena are not
coupled in the field. On multiplying Eqs. (3) and (4) by a
and /3, respectively, the following compatibility conditions

Ci
— = a.
Co

Coa = -
Ci

c0 ,ci 2I- = -a
c0 5

are obtained for the existence of solutions of the form (1).

The solution yields the propagation velocity CI/CQ =
as previously obtained by Grad2 and Lees and Yang1 "and
the following propagation equations:

•>£) (ID
where d = [±cif. On multiplying Eq. (11) by L/c0, the
characteristic equations may be written in the nondimensional
form

± - ± 4.
L (p*» j_ 4 M mr>

~~ *—— I ——— 0/0 KM/2 ——— / ^ '£/C0 \ PQ 0(60) '* PQCQ/

where (cQ/y')(L/Co) is replaced by 1/y and (!/£') (L/c0) is
replaced by 1/t.

When L/CQ <<C tf, Eqs. (2-4) also may be written in the form

5 /« 2 ff, \ d /P.,\ _
diU sW ^\>o/

which yield the propagation equations

5

Equations (5-9) describing the propagation of small longi-
tudinal disturbances are identical with the one-dimensional
equations for the propagation of small longitudinal disturb-
ances. These equations previously were shown5 to possess
the characteristic propagation velocities c2/c0 = ±0,813 and
±2.13 and the characteristic solutions

Ud/ctf) ± 0.813 c0(d/d?/)}Pi± = 0 (14)

± 2.13c0(d/5i/.)} P2± = 0 (15)
where

O.Slp - 0.11 - - 0.42 )
P2± = ( 6 + 0.78 p + 1.18 — ) ± - ( 0.85 ̂  + 1.660 )

\ PQ / Co \ PQ /

Assuming the existence of external heat addition H(y, t)
and an external force F(y, t), the equations become

<^-± 0.813 — i Pi± = (0.487 - T 0.417-) - +(Ot oyj \ PQ c0/ c0

A(o.
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Equations (8) and (10) may be combined to yield an equa-
tion relating the normal stresses which, for L/CQ <<c if, becomes

'Po) (16)

— f 1.57 ^r=fc 0.4^
^/Co \ Po PQCQ/
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Unsymmetrical Buckling of
Shallow Spherical Shells

NAI-CHIEN HUANG*
Harvard University, Cambridge, Mass.

THE numerical results for the critical pressure for un sym-
metrical buckling of clamped, shallow, spherical shells

recently were presented by Weinitschke.1 The author of the
present note independently has obtained results for the same
problem which are in striking disagreement with those of
Weinitschke. The governing differential equations used
agree with those used by Weinitschke. The buckling pres-
sures were calculated numerically. The final results are shown
in Fig. 1 together with some available experimental data.2' 3

The pressure parameter p is defined as the ratio of the ex-
ternal pressure q to the classical buckling pressure #0 of the
complete spherical shell of the same radius of curvature and
thickness; n is the number of waves along the circumfer-
ential direction appearing in the buckling mode. The dis-
agreement with Weinitschke's results is displayed in Fig. 2,
but the reason for this disagreement remains unknown.

According to the author's results, unsymmetrical buckling
(n ^ 0) occurs only for X > 5.5. For X < 5.5, buckling occurs
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Fig. 1 Calculated buckling pressures of clamped, shallow,
spherical shells and experimental results
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Fig. 2 Calculated buckling pressures vs Weinitschke's
results

by axisymmetrical snapping. As X keeps increasing, the
buckling mode shows more and more waves along the circum-
ferential direction and also shows a distinct boundary layer
near the edge of the shell along the radial direction when X is
high. An asymptotic value of the buckling pressure is found
to be 0.864 when X approaches infinity and the ratio of n/\
approaches 0.817. Initial imperfections of the shell are
presumed to be the source of the discrepancy between theory
and experiment.
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On Axially Symmetric, Turbulent,
Compressible Mixing in the Presence

of Initial Boundary Layer

GDALIA KLEINSTEIN*
Polytechnic Institute of Brooklyn, Farmingdale, N. Y.

RECENT experimental results1 have shown that the
mixing of heterogeneous gases having an initial velocity

ratio close to unity occurs faster than is predicted by classical
eddy-viscosity theory. The theoretical analysis of two uni-
form streams of different gases but of nearly equal velocity,
performed with the usual assumptions for eddy viscosity and
Prandtl number equal to a constant,2 shows that mixing will
take place very slowly, i.e., at the rate corresponding to
laminar diffusion. It has been suggested that the difference
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